Jupyter Notebooks
Interactive notebooks for hands-on exploration of Argus functionality.
Available Notebooks
Data Exploration
01.explore_how_minnow_works.ipynb
- Understanding the Minnow framework02.run_on_mock_data_challenge.ipynb
- IPTA mock data analysis02e.loading_mock_data_with_argus.ipynb
- Data loading with Argus
Parameter Estimation
09.estimate_psr_noise_params.ipynb
- Pulsar noise characterization10.estimate_timing_ephemeris_params.ipynb
- Timing model parameters11.inspect_parameter_estimation_results.ipynb
- Result analysis
Analysis Methods
07.explore_inference_convergence.ipynb
- Convergence diagnostics08.explore_different_likelihood_values.ipynb
- Likelihood evaluation12.plot_likelihood_curves.ipynb
- Visualization techniques
Signal Processing
05.PSD_for_OU_process.ipynb
- Ornstein-Uhlenbeck processes06.PSD_for_OU_GW_process.ipynb
- Gravitational wave PSDs
Running the Notebooks
To run these notebooks locally:
# Clone the repository
git clone https://github.com/ADACS-Australia/tkimpson_2025a.git
cd tkimpson_2025a
# Install dependencies
poetry install
# Start Jupyter
jupyter lab notebooks/
Data Requirements
Some notebooks require large datasets that are not included in the repository. Download instructions are provided within each notebook.
Cloud Computing
These notebooks can be run on cloud platforms like Google Colab or Binder for easier access.