Index of all functions
RelativisticDynamics.Constants
RelativisticDynamics.Constants
RelativisticDynamics.Model
RelativisticDynamics.PrognosticVariables
RelativisticDynamics.SystemParameters
RelativisticDynamics.ELQ
RelativisticDynamics.Kretschmann_scalar
RelativisticDynamics.PlotTrajectory
RelativisticDynamics.StackedPlot
RelativisticDynamics.bounds_checks
RelativisticDynamics.calculate_levi
RelativisticDynamics.christoffel
RelativisticDynamics.contravariant_metric
RelativisticDynamics.convert_to_covariant
RelativisticDynamics.covariant_metric
RelativisticDynamics.delta
RelativisticDynamics.initial_conditions
RelativisticDynamics.mapping_d
RelativisticDynamics.mapping_f
RelativisticDynamics.mapping_g
RelativisticDynamics.mapping_h
RelativisticDynamics.metric_contra_g11
RelativisticDynamics.metric_contra_g14
RelativisticDynamics.metric_contra_g22
RelativisticDynamics.metric_contra_g33
RelativisticDynamics.metric_contra_g44
RelativisticDynamics.metric_g11
RelativisticDynamics.metric_g14
RelativisticDynamics.metric_g22
RelativisticDynamics.metric_g33
RelativisticDynamics.metric_g44
RelativisticDynamics.orbit
RelativisticDynamics.permutation_tensor
RelativisticDynamics.riemann
RelativisticDynamics.schwarzchild_covariant_riemann
RelativisticDynamics.sigma
RelativisticDynamics.spintensor
RelativisticDynamics.timestepping
RelativisticDynamics.Constants
— TypeC = Constants(P)
A struct to hold all variables which are constant over the course of the integration. These are derived from the user-defined parameters
RelativisticDynamics.Constants
— MethodGenerator function for a Constants struct.
RelativisticDynamics.Model
— TypeM = Model(P,C)
The model struct which holds all the parameters (P) and constants (C)
RelativisticDynamics.PrognosticVariables
— TypeStruct holding the so-called 'prognostic' variables. 'Prognostic' terminology is borrowed from cliamte science where it refers to any variables that are predicted via integration
RelativisticDynamics.SystemParameters
— TypeP = Parameters(kwargs...)
A struct to hold all model parameters that may be changed by the user. The struct uses keywords such that default values can be changed at creation. The default values of the keywords define the default model setup.
RelativisticDynamics.ELQ
— MethodE,L,Q = ELQ(a,α,e,ι,D)
Calculate the energy, angular momentum and Carter constant given the Keplerian orbital parameters, and the BH spin/direction
RelativisticDynamics.Kretschmann_scalar
— MethodK = Kretschmann_scalar(r,θ,a)
Kretschman scalar for the Kerr metric
RelativisticDynamics.PlotTrajectory
— FunctionPlotTrajectory(solution,model,dimensions=[1,2,3],savepath="")
Plot trajectory of a body. Assumes coordinates are Boyer Lindquist. Plots in either 2D or 3D depending on specification of dimensions. Saves a low resolution PNG figure to disk in example_media/
RelativisticDynamics.StackedPlot
— FunctionStackedPlot(solution,model,savepath="")
Plot the x-y and x-z trajectory of a body on two separate subplots
RelativisticDynamics.bounds_checks
— Methodbounds_checks(P)
Look before you leap - are the user-specified kwargs in parameters physical and reasonable?
RelativisticDynamics.calculate_levi
— Methodl = calculate_levi(NF)
Determine the Levi-civita psuedo tensor
RelativisticDynamics.christoffel
— MethodΓ = christoffel(coords,a)
The christoffel symbols of the Kerr metric. See e.g. https://arxiv.org/pdf/0904.4184.pdf
RelativisticDynamics.contravariant_metric
— Methodg=contravariant_metric(coords,a)
Construct the NxN matrix of the contravariant metric. Metric components are defined via indvidual functions to allow for auto diff in unit tests
RelativisticDynamics.convert_to_covariant
— Methodp_{μ} = convert_to_covariant(metric,p^{μ})
Convert a vector from contravariant form to convariant form using the covariant metric
RelativisticDynamics.covariant_metric
— Methodg=covariant_metric(coords,a)
Construct the NxN matrix of the covariant metric.
RelativisticDynamics.delta
— MethodΔ = delta(r,a)
The well-known delta function of the Kerr metric
RelativisticDynamics.initial_conditions
— Methodinitialization = initial_conditions(M)
Setup the initial conditions for the MPD orbital dynamics
RelativisticDynamics.mapping_d
— Methodd = mapping_d(r,a,zminus)
Mapping function d
used when converting from Keplerian orbital parameters to constants of motion
RelativisticDynamics.mapping_f
— Methodf = mapping_f(r,a,zminus)
Mapping function f
used when converting from Keplerian orbital parameters to constants of motion
RelativisticDynamics.mapping_g
— Methodg = mapping_g(r,a)
Mapping function g
used when converting from Keplerian orbital parameters to constants of motion
RelativisticDynamics.mapping_h
— Methodh = mapping_h(r,a,zminus)
Mapping function h
used when converting from Keplerian orbital parameters to constants of motion
RelativisticDynamics.metric_contra_g11
— Methodg = metric_g11(coords,a)
The covariant tt component of the Kerr metric in Boyer Lindquist coordinates
RelativisticDynamics.metric_contra_g14
— Methodg = metric_g14(coords,a)
The covariant tϕ component of the Kerr metric in Boyer Lindquist coordinates
RelativisticDynamics.metric_contra_g22
— Methodg = metric_g22(coords,a)
The covariant rr component of the Kerr metric in Boyer Lindquist coordinates
RelativisticDynamics.metric_contra_g33
— Methodg = metric_g33(coords,a)
The covariant θθ component of the Kerr metric in Boyer Lindquist coordinates
RelativisticDynamics.metric_contra_g44
— Methodg = metric_g44(coords,a)
The covariant ϕϕ component of the Kerr metric in Boyer Lindquist coordinates
RelativisticDynamics.metric_g11
— Methodg = metric_g11(coords,a)
The covariant tt component of the Kerr metric in Boyer Lindquist coordinates
RelativisticDynamics.metric_g14
— Methodg = metric_g14(coords,a)
The covariant tϕ component of the Kerr metric in Boyer Lindquist coordinates
RelativisticDynamics.metric_g22
— Methodg = metric_g22(coords,a)
The covariant rr component of the Kerr metric in Boyer Lindquist coordinates
RelativisticDynamics.metric_g33
— Methodg = metric_g33(coords,a)
The covariant θθ component of the Kerr metric in Boyer Lindquist coordinates
RelativisticDynamics.metric_g44
— Methodg = metric_g44(coords,a)
The covariant ϕϕ component of the Kerr metric in Boyer Lindquist coordinates
RelativisticDynamics.orbit
— Methodsolution,model = orbit(NF,kwargs...)
Runs RelativisticDynamics.jl with number format NF
and any additional parameters in the keyword arguments kwargs...
. Any unspecified parameters will use the default values as defined in src/parameters.jl
.
RelativisticDynamics.permutation_tensor
— Methodϵ = permutation_tensor(metric)
Calcualte the Levi-civita tensor in an arbitrary basis.
RelativisticDynamics.riemann
— MethodR = riemann(coords,a)
Riemann tensor components of the Kerr metric. First index is the contravariant, others are covariant
RelativisticDynamics.schwarzchild_covariant_riemann
— MethodR = schwarzchild_covariant_riemann(coords,a)
Special case - the fully covariant components of the Riemann tensor for schwarzchild metric Used for testing
RelativisticDynamics.sigma
— MethodΣ = sigma(r,θ,a)
The well-known sigma function of the Kerr metric
RelativisticDynamics.spintensor
— MethodS^{μ ν} = spintensor(levi,pvector,svector,m0)
Calculate the contravariant spin tensor.
RelativisticDynamics.timestepping
— Methodsolution = timestepping(X,M)
The timestepping integration once all variables have been initialised